Investigating the Effect of Ionizing Radiation on Intraocular Lenses at Clinical Doses
نویسنده
چکیده
Background: The natural crystalline lens of the eye is considered as one of the most radiosensitive tissues of the human body and long-time research demonstrates an association between ionizing radiation exposure and cataract development. Intraocular lens (IOL) implants are synthetic lenses used to replace the cataractous human lens of the eye and obtain optical rehabilitation in cataract surgery. However, post-operative complications such as capsular opacification, considerable cloudiness or discoloration may appear 2-3 years after the surgery. As the factors affecting the postoperative "life" of the IOL have not yet been fully clarified, in this study we examine if the irradiation with x-rays at clinical doses in interventional radiology and cardiology procedures of human eye can affect the transparency and clarity of the IOLs. Methods and findings: A number of intraocular lenses with different polymer composition and refractive power (diopters) were studied. In this work we present the results obtained with 3yellow azo-dye doped IOL (Alcon) and 1 undoped hydrophobic acrylic IOL (Alcon) having the same diopter, that were irradiated toclinical doses of 25, 67, 600 (for the doped) and 300 mGy (for the undoped IOL) respectively. The transmittance of the IOLs was measured pre-irradiation and post-irradiation by using a spectralon-coated integration sphere and a UV/Visible spectrometer over the visible-near infrared spectrum range from 420-900 nm. The transmission spectra of the IOL pre and post-irradiation indicate that in the blue-green spectrum region from 420-550 nm theIOLs show an increase in the transmittance T, with a highest ΔΤ changeequal to 35%, 37%, 38% at 420 nm for doses of 25 mGy, 67 mGy and 600 mGy respectively. In the residual spectrum region from 550-900 nm the transmittance is decreased by percentage 2%, 5% and 6%, respectively. However, the transmission spectrum of the undoped IOL presents the same behavior in the blue-green region and a change in the transmittance at percentage 4% is observed in the spectrum region 550-900 nm after x-ray irradiation to dose of 300 mGy. Conclusion: The results indicate that the irradiation with x-rays decreases the protection of the filter of the yellow azo-dye doped IOLs against the harmful for the retina UV radiation and short wavelength blue right, while affects slightly the transmittance in the residual visible-near infrared spectrum.
منابع مشابه
Radiation hormesis and adoptive response induced by low doses of limiting radiation
Ionizing radiation has long been known to produce detrimental biological effects. Although these harmful effects are the results of high doses of exposure, some other maladies such as mutation and cancer seems to be induced at low doses of exposure. In recent decades, however, some pioneer scientists have indicated that ionizing radiation like many other essential agents has toxic effects ...
متن کاملInvestigation of the Effect of Electron Beam Different Doses on Optical Dissipation in Fiber Optic
Measurement of ionizing radiation in various fields, such as environmental safety, industrial detection processes, radiation protection and medical is very important. Radiation dosimetry plays an important role in determining the amount of energy absorbed and the effects of radiation. Recent optical fiber sensors have been shown to be radiation dosimeters. Our goal here is to investigate the ef...
متن کاملImpact of Ionizing Radiation on the Expression of CDC25A Phosphatase (in vivo)
Background and Objective: The cell division cycle 25 (CDC25)is a familyof highly conserved dual-specificity phosphatases that activate cyclin-dependent kinase complexes. These complexes are the main cell cycle regulators. Mammalian cells ,exposure to DNA damaging radiations such as ionizing radiation and ultraviolet light, prevent cell cycle progression by activation of checkpoint pathways an...
متن کاملThe effect of delivering compensating doses on the survival of F10B16 melanoma and 4T1 breast adenocarcinoma treated with prolonged radiation delivery time
Background: Increasing the complexity in modern radiotherapy techniques have increased the delivery time lowering consequently the treatment efficacy. Through simulating the delivery time delay encountered in such techniques, its’ effect on two cancer cell lines and the compensating doses given to prevent such effect was investigated. Materials and Methods: F10B16 and 4T1 cancer cell line...
متن کاملRadiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cu...
متن کامل